

Bactericidal effect of zeolites against Gram-negative bacteria

Jasna Hrenović¹, Jelena Milenković², Nevenka Rajić³

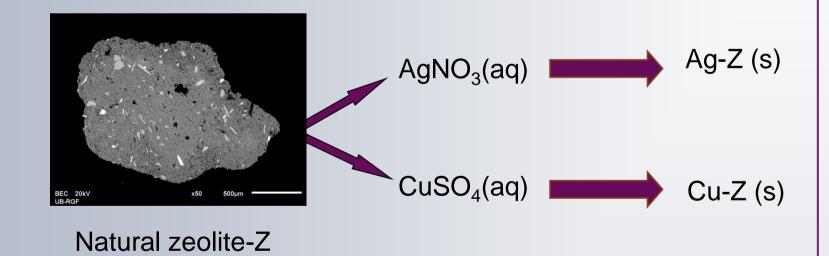
¹University of Zagreb, Faculty of Science, Division of Biology, Zagreb, Croatia ²University of Belgrade, Innovation Center of the Faculty of Technology and Metallurgy, Belgrade, Serbia ³University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia **E-mail:** jasna.hrenovic@biol.pmf.hr

Introduction

In view of the increasing resistance of bacteria towards available antibiotics, research efforts are focused to alternative disinfectants. *Escherichia coli* and *Acinetobacter baumannii* are one of the most multidrug-resistant bacteria. In this study, the antibacterial activity of natural zeolite – clinoptilolite enriched with metal cations against pathogenic Gram-negative bacteria *E. coli* and *A. baumannii* was tested in different water media.

Results

Table 1. Antibacterial activity expressed as percent of reduction of *E. coli* (DSM 498, isolates from lake water 1 and 2) in real water media by Z, Cu- and Ag-Z. Mean values of triplicate measurements and standard deviations are presented. The lowest limit of detection was 10 CFU cm⁻³. A - significant as compared to positive control without addition of zeolite.

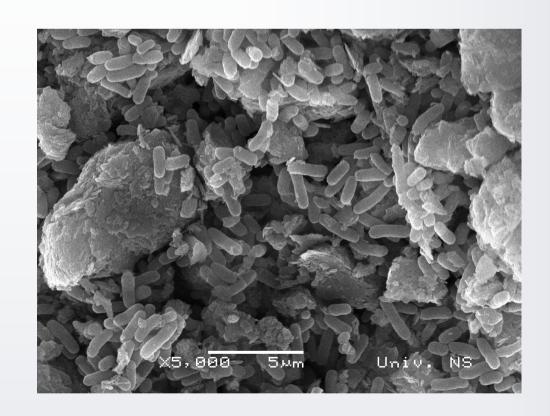

<i>E. coli</i> isolate		Percent of reduction (%)		
	Time (h)		Zeolite	
		Z	Cu-Z	Ag-Z
DSM 498	1	0.3	43.0 ^A	100.0 ^A
	24	-1.1	100.0 ^A	100.0 ^A
Isolate 1	1	-0.2	73.6 ^A	100.0 ^A
	24	-1.4	100.0 ^A	100.0 ^A
la alata D	1	-1.5	60.4 ^A	100.0 ^A
Isolate 2				

Aim

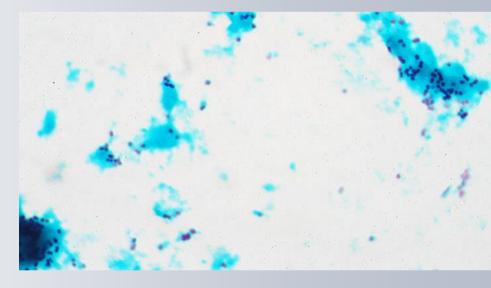
Natural zeolite – clinoptilolite (Z) enriched with silver and copper ions was investigated as antibacterial agent toward wildtype of *E. coli* DSM 498, isolates of *E. coli* from a lake water in Serbia, as well as against multi-drug resistant clinical isolate of *A. baumannii* belonging to European clone I and II (EU I and II).

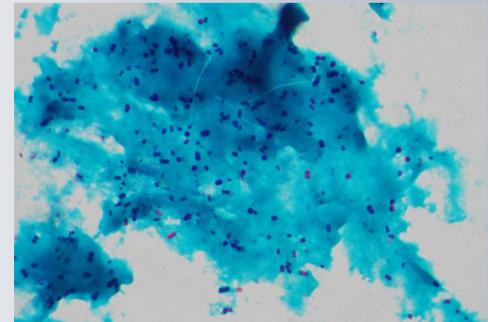
Methods

• Clinoptilolite-rich tuff (Z) from Zlatokop deposit (Serbia) was enriched with Cu(II) and Ag(I) ions by an ion-exchange procedure. The obtained Ag-Z and Cu-Z contained similar amounts of metal ions (~0.3 mmol Cu/Ag per 1 g of Z).

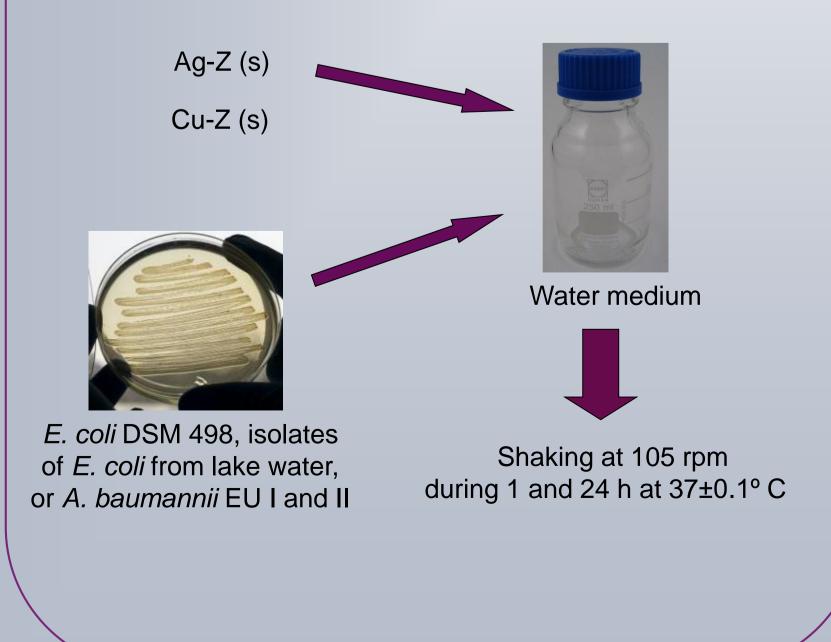

24	1.8	100.0 ^A	100.0 ^A

 t_0 (log CFU cm⁻³) *E. coli* DSM 498 = 7.1±0.3; t_0 (log CFU cm⁻³) *E. coli* Isolate 1 and 2 = 7.2±0.1.


Table 2. Antibacterial activity expressed as percent of reduction of *A. baumannii* EU I and II in PBS buffer by Cu- and Ag-Z. Mean values of triplicate measurements and standard deviations are presented. The lowest limit of detection was 10 CFU cm⁻³. A - significant as compared to positive control without addition of zeolite.


<i>A. baumannii</i> isolate		Percent of reduction (%)		
	Time (h)	Zeolite		
		Cu-Z	Ag-Z	
EUI	1	15.80 ^A	13.56 ^A	
	24	-1.71	78.61 ^A	
EU II	1	21.86 ^A	37.10 ^A	
	24	39.83 ^A	100.00 ^A	

 t_0 (log CFU cm⁻³) *A. baumannii* EU I = 8.80±0.17; t_0 (log CFU cm⁻³) *A. baumannii* EU II = 1.40±0.17.



E. coli DSM 498 spontaneously

• The antibacterial tests were conducted in: phosphate buffer solution (PBS), effluent from a wastewater treatment plant, or water from Sava lake. Solid/liquid ratio was 1:1000.

immobilized on the surface of Z.

Thick layer of extracellular substances with embedded cells of *A. baumannii* isolates EU I and II.

Conclusions

- All examined isolates of *E. coli* are more sensitive toward Ag-Z than toward Cu-Z.
- *E. coli* isolate 1 is the more sensitive toward Cu-Z than isolate 2 and DSM 498.
- A. baumannii isolates are more resistant than E. coli toward Ag-Z and Cu-Z.
- A. baumannii belonging to EU II is more sensitive than EU I toward Ag-Z and Cu.
- Concerning the bactericidal effect, Cu-Z and Ag-Z are promising disinfectants.
- The natural unmodified zeolite can be used as carrier of bacteria in bisorption process.

Acknowledgements

This work was financially supported by the Croatian Science Foundation (grant no. IP-2014-09-5656) and by the Serbian Ministry of Education, Science and Technological Development (project no. 172018).

11th Serbian Microbiologists Congress MICROMED 2017, Belgrade, Serbia